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Abstract
This paper treats computer modeling of the process of constructing free projective

planes — more precisely, to algorithmically finding their successive incidence matrices;

and also to considering some numerical characteristics of these matrices. Matrix and

bilinear forms approaches are used to study the growth rate of the number of new

elements (points, lines) during step-by-step process of constructing projective plane

starting with the Hall Π4
configuration. It appears that the number of new elements

grows asymptotically as a double exponent (linear on log (log ) scale.) Rough estimate
from above also gives double exponential growth rate.
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1. INTRODUCTION
W. W. Sawyer in his Prelude to Mathematics [1] writes: "Projective geometry is one of the

most beautiful parts of elementary mathematics.

For the professional mathematician it is undoubtedly an essential part of one’s education.

One does not need to go very far with it; the value of a detailed study of it is doubtful, except

for the specialist. But the basic patterns of projective geometry can be traced in many other

branches of mathematics; they serve to guide and to unify."

The subject of this paper is free and finite projective planes, part of the vast area of modern

combinatorics, called the theory of combinatorial designs. Combinatorial design theory is the

part of combinatorial mathematics that deals with the existence, construction and properties of

systems of finite sets whose arrangements satisfy generalized concepts of balance and/or sym-

metry [2]. Applications of combinatorial design theory can be found in many areas including

finite geometry (finite affine and projective planes, Möbius or inversive planes, etc.), tourna-

ment scheduling, experimental design, lotteries, mathematical biology, algorithm design and

analysis, networking, finite groups theory, and cryptography. We address interested readers to

the previously cited article in Wikipedia and references therein. Combinatorial designs have a

long history: for example, the magic square of order three, the so-called Lo Shu Square, dates

at least to 650 BC; the oldest image of this square was found on a tortoiseshell dated 2200 BC
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(according to legend the Chinese Emperor Yu observed the magic square 4 9 2
3 5 7
8 1 6


on the back of a divine tortoise [11].) Combinatorial design methods evolved along with the

general growth of combinatorics from the 18th century, for example, from the studies of Latin

squares and the famous "36 officers problem", which goes back to Leonard Euler (1782) [11].

Today, one can see many people solving Sudoku puzzles — actually, they are solving a classic

combinatorial design problem.

Classical subjects of combinatorial design theory include balanced incomplete block designs

(BIBDs), symmetric BIBDs, Hadamard matrices and Hadamard designs, difference sets. Other

combinatorial designs are related to or have been developed from the study of these fundamen-

tal ones.

Let us give for the sake of completeness, the definition of BIBD (balanced incomplete block

design), or (b, v,r,k,λ)-configuration [11]. Let X be a finite set of v elements. A balanced incom-
plete block design (or simply block design) is a collection B of b subsets (blocks) of X , such that
every block has the same number k of elements, each pair of distinct elements appear together
in the same number λ of blocks, where k < v − 1, λ > 0, and any element of X is contained

(replicated) in the same number r of blocks.
It follows immediately from the definition that r (k −1) =λ(v −1) and bk = vr.
A symmetric balanced incomplete block design (SBIBD), (v,k,λ)-configuration is a BIBD in

which the number of elements equals the number of blocks (v = b). They are the single most
important and well studied subclass of BIBDs.

A finite projective plane of order n is SBIBD with parameters v = n2 +n +1, k = n +1, λ= 1.
The theory of combinatorial designs in general and of finite geometries in particular

abounds with a mass of unsolved problems that are difficult to be investigated even with

modern methods of combinatorial mathematics. This also applies to the theory of projective

planes (see for example the "Prime-power hypothesis for the orders of the finite projective

planes" below). In particular, no sufficiently developed general theory of construction and the

structure of finite projective planes has been created to date.

In view of this, it seems quite natural that in an effort to create such a theory, mathemati-

cians turned to already known analogous constructions usually called "free objects" of the the-

ory in question. In our case, we are talking about "free projective planes", which being infinite

themselves, can shed light on problems associated with finite projective planes.

Of course, the study of free projective planes is also of great interest by itself.

Free projective planes were first introduced by M. Hall in his fundamental paper [3] where

he considered their basic properties. Since then, these planes have become the subject of con-

stant interest of mathematicians studying abstract algebraic structures, group theory and their

representations, and so on [4, 5, 7? , 8]. There are also good surveys which one can use to get
acquainted with the basic concepts and achievements of the modern theory of combinatorial

geometries, for example, [6, 10–12]. As a general introduction to the projective geometry, one

can use e.g. [13–15].

This paper is devoted to computer modeling of the process of constructing free projective

planes — more precisely, to algorithmically finding their successive incidence matrices; and to

considering some numerical characteristics of these matrices.

Remarks about notations: If A is a (non-empty) matrix then di m1(A) (resp. di m2(A)) is a
number of its rows (resp. columns); [A]i , j means its element at the entry (i , j ); Ai (resp. A j

)
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means i -th row (resp. j -th column); di ag (A) for a square matrix A means column-vector of its
diagonal elements; Tot al [A] is a sum of all elements in A. Moreover, we treat binomial coeffi-
cient

(x
2

)
and differential operators (derivatives, Laplace operator) as listable functions.

ηi , j is a column-vector with "1"-s only in two different positions i and j and all the rest
components equal to "0"-s.

As a rule we do not show the matrix format explicitly unless it is not clear from context.

E denotes identity matrix; J is a square constant matrix of (only) "1"-s; J∗ = J −E ; {} de-
notes empty matrix; 〈 , 〉means Euclidean scalar product; for a matrix A and real α we define a
product α• A as follows:

α• A =
{
αA, if α, 0

{}, if α= 0.

A ◦B denotes the element-wise (Hadamard) product of matrices with the identical formats.
If A and B are matrices having appropriate formats then A|∪B (resp. A ∪B ) denotes a con-

catenation of A and B from the right (resp. from below) providing A|∪ {} = A∪ {} = A.

2. PRELIMINARIES
In this section we mostly follow the terminology and definitions of [6].

Definition 1. A configuration (or a partial plane [1]) is a pair Π = (P,L) where P is (nonempty)
set of points and L is a family of subsets of P called lines under the condition that the following
axiom is valid:

C1: Any two different points are incident with no more than one line.

Axiom C1 implies

C2: Any two different lines are incident with no more than one point in common.

As a rule in this paper we shall be interested only in the case of finite sets P.
Examples 1.
1. Desargues’ configuration directly related to the Desargues’ theorem (a classic example of

the projective theorem, completely independent of measurement) is well-known (see, e.g. [1],

[6]): Mark a point O, draw the three lines O A,OB ,OC . Points A,B , and C can be anywhere on
these lines. Also choose any three points A′

, B ′
, C ′
, A′

on O A, B ′
on OB ,C ′

on OC . Join AB and
A′B ′

. These two lines intersect in point F. In the same way, AC and A′C ′
intersect in point E , BC

and B ′C ′
intersect in point D.

Desargues’ theorem for the usual real projective plane claims: points D,E , and F lie on a
straight line (see Fig. 1).

Desargues’ configuration consists of 10 lines, each incident to 3 points, from the other side,

there are 10 points, each incident to 3 lines. It has a strong symmetry: any of these 10 points

could be marked as O, there always will be a way (actually, several ways) to mark other points
so that the statement of the theorem remains true. There are 120 different ways of putting in the

letters on the picture without any changes in the printed statement being necessary [1].

2. Another classic example of the projective theorem, completely independent of measure-

ment is Pappus theorem. Pappus configuration we get by taking two lines and choosing three

points A,B ,C on one line and three points A′,B ′, and C ′
on another line (points should be dif-

ferent from the intersection point of this two lines.) Connect A with B ′
and C ′

; connect B with
A′
and C ′

; connect C with A′
and B ′. Let us denote intersection of lines AB ′

and A′B by D ,
intersection of lines AC ′

and C A′
by E , intersection of lines C A′

and C ′A by F .
Pappus’ theorem: Points D,E , and F are collinear (see Fig. 2.)
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Figure 1. Two examples of the Desargues’ configuration. Points D,E , and F lie on a straight line

Figure 2. Pappus’ configuration. Points D,E , and F lie on a straight line

Pappus’ configuration consists of 9 lines, each incident to 3 points, from the other side, there

are 9 points, each incident to 3 lines (cf. [1, 6]).

3. If in Definition 1 L = ; and |P | = m, m > 0 is an integer, then we have a pure m-points
configuration.

4. If L consists of all pairs {a,b}, a,b ∈ P, a , b then Π= (P,L) is a full graph onm vertices.

5. Let Πm = (P,L), m ≥ 4 be a configuration with |P | = m and only one line λ, (i.e. L = {λ})
where |λ| = m−2. This means that all points besides two of them lie on the (unique) line λ. These
configurations are called standard [10] or Hall configurations and were first introduced by M.

Hall in his fundamental paper [3], p. 237.

Definition 2. Configuration Π = (P,L) is called a projective plane, if in axioms C1 and C2 the
words "...with no more than one..." are changed by "... exactly one...", i.e. inΠ= (P,L) the follow-
ing axioms are valid:

P1: Any two different points are incident to exactly one line;

P2: Any two different lines are incident to exactly one point in common;

and in addition the axiom

P3: There exist 4 different points such that no three of them are collinear; in order to exclude

some degenerate configurations (cf. [10]).

The following simple statements can be easily proved for a finite projective plane [4]:

A) Every line is incident to exactly n +1 points;

B) Every point is incident to exactly n +1 lines;

C) |P | = |L| = N = n2 +n +1.

The number n is called the order of the finite projective plane.

Example 2. Fano plane: for n = 2 we obtain an example of a "smallest" (nondegenerate) projec-
tive plane, called the Fano plane. This plane contains 7 = 22 +2+1 points and 7 lines, each line
contains 3 = 2+1 points and through each point pass 3 lines (Fig. 3).
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Figure 3. Fano plane— finite projective plane of order two

"Prime-power hypothesis for the orders of the finite projective planes" claims that always

n = pµ
for some prime p. To date, this hypothesis remains unproved.

Definition 3. IfΠ= (P,L) is a finite configuration with |P | = m and |L| = l , l > 0 then the incident
matrix of Π is defined as l ×m 0-1-matrix A = (ai , j ) where

ai , j =
{

1, if point j is incident with line i

0, if point j and the line i are not incident
(1)

in some chosen (and fixed) numerations of sets P and L.

Example 3.
1. Incident matrix of Desargues’ configuration (with proper numbering of points

O, A,B ,C , A′,B ′,C ′,D,E ,F ) is

0 1 1 1 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0 0
1 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 1 0 0 1
0 1 0 0 0 1 1 0 0 0
0 0 1 0 1 0 1 0 0 0
0 0 0 1 1 1 0 0 0 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 1 0


.

We leave as an exercise for the reader to find corresponding numberings for Fig. 1.

2. Incident matrix of Pappus configuration with ordering points A,B ,C , A′,B ′,C ′,D,E ,F
(Fig. 2) is 

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
1 0 0 0 1 0 1 0 0
1 0 0 0 0 1 0 0 1
0 1 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0 1
0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 0 0 0 1 1 1


.
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3. Incident matrix of the Fano plane (with proper numbering of points A,B ,C ,D,E ,F,G) is
cyclic: 

0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0


.

Again, we leave as an exercise for the reader to find corresponding numbering for Fig. 3.

General properties of the incident matrices are as follows:

a. The i -th row Ai of incident matrix indicates all points incident to the i -th line and

Tot al [Ai ] =
n∑

j=1
ai , j =

n∑
j=1

a2
i , j (2)

= 〈Ai , Ai 〉 = (number of points on the i -th line)

whereas for i , k the scalar product 〈Ai , Ak〉 is 0 or 1 according to axiom C2.
b. Dually, the j−th column A j

of incident matrix shows all lines incident to the j -th point
and

Tot al [A j ] =
l∑

i=1
ai , j =

l∑
i=1

a2
i , j (3)

= 〈A j , A j 〉 = (number of lines incedent to the j -th point)

whereas for j , k the scalar product 〈A j , A j 〉 is 0 or 1 according to the axiom C1.
c. So, the i -th diagonal element of the product A AT

equals (number of points on the i -th
line), whereas the elements outside the diagonal are 0 or 1. Of course, mutatis mutandis this is

valid also for AT A. Obviously

Tr (A AT ) = Tr (AT A) = Tot al (A) (4)

d. If all the outside-diagonal elements in A AT
(resp., AT A) are equal to 1, we say that config-

uration is line-wise ample (resp. point-wise ample).

Clearly, if Π = (P,L) is a projective plane of order n then it is both point-wise ample and
line-wise ample and its incident matrix is a square N ×N 0-1-matrix such that

A AT = AT A = nE + J (5)

(cf. for example, [4]).

Example 4. These properties can easily be checked with matricies from the Example 3. For
example, for the incident matrix of the Fano plane (n = 2) we have

A AT =



3 1 1 1 1 1 1
1 3 1 1 1 1 1
1 1 3 1 1 1 1
1 1 1 3 1 1 1
1 1 1 1 3 1 1
1 1 1 1 1 3 1
1 1 1 1 1 1 3


,
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while for the incident matrix of the Pappus configuration we have

A AT =



3 0 1 1 1 1 1 1 0
0 3 1 1 1 1 1 1 0
1 1 3 1 1 0 0 1 1
1 1 1 3 0 2 0 1 1
1 1 1 0 3 1 1 0 1
1 1 0 2 1 3 0 1 1
1 1 0 0 1 0 3 1 1
1 1 1 1 0 1 1 3 1
0 0 1 1 1 1 1 1 3


.

3. FREE PROJECTIVE PLANE GENERATED BY CONFIGURATION
Let Π0 = (P0,L0) be some (initial) configuration. The free projective plane generated by Π0

is defined by the following process:

1. Let Π1 = (P1,L1) be a new configuration where L1 = L0 and P1 = P0 ∪νP0

νP0 = {(a)(b)|a,b ∈ L0, a and b are not incident in Π0} (6)

i.e. every pair of non-incident lines defines a new point named (a)(b)which is "intersection" of
lines a and b. Evidently Π1 is line-wise ample.

2. Let Π2 = (P2,L2) be a new configuration where P2 = P1 and L2 = L1 ∪νL1

νL1 = {(a)(b)|a,b ∈ P1, a and b are not incident in Π1} (7)

i.e. every pair of non-incident points a and b defines a new line named (a)(b) which "connects"
points a and b. Evidently Π2 is point-wise ample.

Iterating this construction we get a sequence (finite or infinite) of configurations

{Π0,Π1,Π2,Π3,Π4,Π5, . . . ,Πr , . . . } in which for r even we add new points to Πr , as in item
1 and for r odd we add new lines to Πr as in item 2 and get next configuration Πr+1, r ≥ 0.
Proposition 1 (see [6]). If Π0 contains 4 different points no three of which are collinear then

Π= f r (Π0) =⋃∞
k=0Πk is a projective plane.

This plane is said to be the free projective plane generated by Π0.
Remarks:
1. If an initial configuration Π0 is finite and has isolated ("empty") point(s) (resp. "empty

lines") then after the first (resp. "second") step of the above algorithm such point(s) (resp. "lines")

will vanish, so in order for the computer realization of the algorithm to be implemented cor-

rectly, we must always require that the initial incident matrix (and hence all the next) does not

contain zero-columns (resp. "zero-rows").

2. The construction of "names" for new points/lines in the above definition gives rise to at-

tempts to consider free projective planes as commutative but not associative universal algebras

[? ].
Example 5.
1. If Π0 is a projective plane then evidently f r (Π0) =Π0.
2. If |Π0| = 3 and |L0| = 0 then f r (Π0) is called a "projective plane of order n = 1" (see Defini-

tion 2, p.1) and it is a plane over the field of one element (Fig. 4, left). This plane is referred to as

"degenerated" because Axiom P3 evidently is not valid for it. Its incident matrix is cyclic.

The following theorem of M. Hall (see [3]) explains the importance of Hall configuration Π4
:
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Figure 4. Projective plane of order n = 1 (left) and its incident matrix (right).

1) Let Π0 is any non-degenerate configuration but not a projective plane. Then f r (Π0) con-
tains f r (Π4) as a subplane. Moreover, such plane is never desarguesian.

2) A f r (Πm), m ≥ 4 contains f r (Πm+1).

Everywhere in what follows we deal only with the Hall configuration Π4, i.e. f r (Π4) =
{Π4

r }r=0,1,2,..., that is "free equivalent"(see [3]) to a pure configuration on 4 points, i.e., a full graph
with 4 vertices.

4. MATRIX APPROACH
According to what was said at the end of previous section we begin with configuration

Π0 =Π4
(which is zero-step, s = 0, of our algorithm) with incident matrix

A0 =



0 0 1 1
0 1 0 1
0 1 1 0
1 1 0 0
1 0 1 0
1 0 0 1


which corresponds to the configuration 4 from Example 1 withm = 4. This configuration (tetra-
hedron) is shown below on Fig. 5 (left).

Evidently here dim1(A0) =Λ0 = 6, dim2(A0) = P0 = 4.

Since

A0 AT
0 =



2 1 1 0 1 1
1 2 1 1 0 1
1 1 2 1 1 0
0 1 1 2 1 1
1 0 1 1 2 1
1 1 0 1 1 2

 , AT
0 A0 =


3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3



this configuration is point-wise ample (any two different points are incident), but is not line-wise

ample because exactly 3 pairs of lines, namely 1,4, 2,5 and 3,6, have no points in common.

According to item 1 of the general constructing of f r (Π0) at the next step s = 1 we must add
to Π0 νP0 = 3 new points, namely (1)(4), (2)(5) and (3)(6) (see Fig. 5 (center)), that means that
we must concatenate (from the right) to A0 three new columns numbered respectively 5, 6, 7,

whereas the number of new lines νA0 = 0.

So, here dim1(A1) =Λ1 =Λ0 = 6, dim2(A1) = P0 +νP0 = 4+3 = 7 and the matrix of the next
configuration Π1 (see Fig. 5 (right)) is
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A1 =



0 0 1 1 1 0 0
0 1 0 1 0 1 0
0 1 1 0 0 0 1
1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 0 1 0 0 1

 .

Figure 5. Initial configuration Π0 = Π4
(left) and two steps of the algorithm: adding new points (center)

and new lines (right)

Note that positions of "1"-s in the concatenated columns are exactly 1 and 4, 2 and 5, and 3
and 6.

Going over to the next step s = 2 we find that

A1 AT
1 =



3 1 1 1 1 1
1 3 1 1 1 1
1 1 3 1 1 1
1 1 1 3 1 1
1 1 1 1 3 1
1 1 1 1 1 3

 ,

AT
1 A1 =



3 1 1 1 1 1 1
1 3 1 1 1 1 1
1 1 3 1 1 1 1
1 1 1 3 1 1 1
1 1 1 1 2 0 0
1 1 1 1 0 2 0
1 1 1 1 0 0 2


.

So, here dim1(A2) =Λ+2 =Λ1 +νΛ1 = 6+3 = 9, dim2(A2) = P2 = P1 +νP1 = 7+0 = 7 and the
matrix of the next configuration (see Fig. 5 (center)) is

A2 =



0 0 1 1 1 0 0
0 1 0 1 0 1 0
0 1 1 0 0 0 1
1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 0 1 0 0 1
0 0 0 0 1 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 1


.
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Now it is not difficult to describe the general case for any step s > 0 :

a1) If s ≡ 1mod 2 we add new points

νPs−1 = (number of non-incident lines at step s −1)

= 1

2
(number of "0"-s in As−1 AT

s−1) (8)

=
(
Λs−1

2

)
−Tot al

[(
di ag (AT

s−1 As−1)

2

)]

=
(
Λs−1

2

)
−Tot al

[(
AT

s−1 As−1

2

)]

whereas clearly νAs−1 = 0.

Proof of (8): The first and second equalities are evident.
Furthermore, Tot al

[(di ag (AT
s−1 As−1)
2

)] = Tot al
[(AT

s−1 As−1

2

)]
because

(1
2

) = 0. At last,
(Λs−1

2

)
is

equal to the all pairs of different lines at step s −1, whereas Tot al
[(di ag (AT

s−1 As−1)
2

)]
is equal to

such pairs of lines which are already incident at this step (see item c of general properties of the

incident matrices, p. 2).

For example, for s = 1 we get νP0 =
(6

2

)−4 · (3
2

)= 3, since Λ0 = 6, di ag (AT
0 A0) = (3333).

In other words, here we get the Λs ×Ps -matrix As , where Λs =Λs−1, Ps = Ps−1 +νPs−1, by
concatenating from the right to As−1 one by one new νPs−1 columns.

So, in this case we get a formula (we remind that 0•a = {}):

As = As−1|
⋃

2≤i≤As−1i≤ j≤As−1

(
(1− [As−1 AT

s−1]i , j )•ηi , j
)

(9)

Dually,

a2) If s ≡ 0mod 2 we add new lines

νΛs−1 = (number of non-incident points at step s −1

= 1

2
(number of "0"-s in AT

s−1 As−1) (10)

=
(

Ps−1

2

)
−Tot al

[(
di ag (As−1 AT

s−1)

2

)]

=
(

Ps−1

2

)
−Tot al

[(
As−1 AT

s−1

2

)]

whereas clearly νPs−1 = 0.

For example, for s = 2we get νΛ1 =
(7

2

)−6 · (3
2

)
, since P1 = 7, di ag (A1 AT

1 ) = (3 3 3 3 3 3). So, in
this case we get a formula:

As = As−1
⋃

2≤i≤As−1i≤ j≤As−1

(
(1− [AT

s−1 As−1]i , j )•ηT
i , j

)
. (11)

Formulas (9) and (11) give rise to the first variant of our algorithms.

First four steps are illustrated on Fig. 6.
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Figure 6. Incident matrix of initial configuration (a) and four first steps of the algorithm: three new points
added (b), three new lines added (c), 6 new points added (d), 24 new lines added (e)

5. BILINEAR FORMS APPROACH
Let π = {pi }∞i=1 and λ = {li }∞i=1 be two sets of independent variables for points and lines

respectively.

For any step s ≥ 0 we introduce a bilinear form Fs = Fs(π,λ) = πT Asλ where As is an inci-

dent matrix constructed on step s (see Sec. 3) and π and λ are initial segments of the infinite
sequences of variables π and λ having appropriate lengths. For example, for s = 0 we have
π= {pi }4

i=1, λ= {li }6
i=1 and

F0 = l4p1 + l5p1 + l6p1 + l2p2 + l3p2 + l4p2 + l1p3 + l3p3 + l5p3 + l1p4

+l2p4 + i6p4 (12)

= l1(p3 +p4)+ l2(p2 +p4)+ l3(p2 +p3)+ l4(p1 +p2)+ l5(p1 +p3)

+l6(p1 +p4)

= p1(l4 + l5 + l6)+p2(l2 + l3 + l4)+p3(l1 + l3 + l5)+p4(l1 + l2 + l6).

Now it is clear that also in general case Coe f f i ci ent [Fs , li ] = ∂Fs
∂li
is a linear form in π repre-

senting the i−th row of As ; Coe f f i ci ent [Fs , p j ] = ∂Fs
∂p j
is a linear form in λ representing the

j−th column of As .
Also it is clear that two lines, li and lk with 1 ≤ i ,k ≤ Λs , i , k are not incident iff. the

linear forms
∂Fs
∂li
and

∂Fs
∂lk
have no variables in common that implies that in this case the Laplace

operator in π

∆π

(
∂Fs

∂li
· ∂Fs

∂lk

)
= ∑

p∈π
∂2

∂p2

(
∂Fs

∂li
· ∂Fs

∂lk

)
= 0 (13)

and otherwise

∆π

(
∂Fs

∂li
· ∂Fs

∂lk

)
= 2. (14)
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It’s clear that if i = k then

λπ

((
∂Fs

∂li

)2)
= 2 · (number of points on i − th line)= 2

[
di ag (As AT

s )
]

i (15)

For example,

∆π

(
∂F0

∂l1
· ∂F0

∂l4

)
=

4∑
r=1

∂2

∂p2
r

(
(p3 +p4)(p1 +p2)

)= 0,

whereas

∆π

(
∂F0

∂l1
· ∂F0

∂l2

)
=

4∑
r=1

∂2

∂p2
r

(
(p3 +p4)(p2 +p4)

)= 2,

and

∆π

(
∂F0

∂l1

)2

=
4∑

r=1

∂2

∂p2
r

(
(p3 +p4)2)= 2 ·2 = 4.

Obviously that formulas dual to (13), (14) and (15) also are valid mutatis mutandis.

Using formulas (13), (14), (15) and their duals it is easy to verify matrices equalities

1

2
∆π

((
∂Fs

∂λ

)⊗2)
= As AT

s ,
1

2
∆λ

((
∂Fs

∂π

)⊗2)
= AT

s As , (16)

where
∂Fs
∂λ = g r adλ( fs), ∂Fs

∂π = g r adπ( fs), the Laplace operators are supposed to be listable and
⊗2
means tensor square.

Now we are going to write the recurrent formulas from step s −1 to step s :
Formulas (8) and (10) may be written in terms of bilinear forms as follows:

νPs−1 =
(
Λs−1

2

)
−Tot al

[
Bi nomi al

[
1

2
∆π

(
∂Fs−1

∂λ

)2

,2

]]
, (17)

νΛs−1 =
(

Ps−1

2

)
−Tot al

[
Bi nomi al

[
1

2
∆λ

(
∂Fs−1

∂π

)2

,2

]]
. (18)

As to a recurrent relation between forms Fs−1 and Fs here we have

Fs = Fs−1 +νFs−1, s ≥ 1. (19)

For brevity of writing formulas for we use the reduced Laplace matrices ∆π(Fs) = J − J∗ ◦
1
2∆π

((
∂Fs
∂λ

)⊗2
)
and ∆λ(Fs) = J − J∗ ◦ 1

2∆λ

((
∂Fs
∂π

)⊗2
)

. For example, if s = 0 then

1

2
∆π

((
∂F0

∂λ

)⊗2)
=



2 1 1 0 1 1
1 2 1 1 0 1
1 1 2 1 1 0
0 1 1 2 1 1
1 0 1 1 2 1
1 1 0 1 1 2


and

∆πF (x0) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 ,
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i.e. in ∆πF (x0) all non-zero elements become "0"-s and all zeros become "1"-s.
Then it is not difficult to check that

for odd step, s ≡ 1mod 2,

νFs−1 =
∑

1≤i≤Λs−1,i≤ j≤Λs−1

(li + l j )pσ(i , j )

⌊
∆π

⌋
i , j

, where σ(i , j ) = Ps−1 +
∑

α≤i ,β≤ j
b∆πci , j (20)

for even step, s ≡ 0mod 2, s > 0

νFs−1 =
∑

1≤i≤Ps−1,i≤ j≤Ps−1

(pi +p j )lσ(i , j )

⌊
∆λ

⌋
i , j

, where σ(i , j ) =Λs−1 +
∑

α≤i ,β≤ j
b∆πci , j . (21)

For example, if s = 1 then νF0 = (l1 + l4)p5 + (l2 + l5)p6 + (l5 + l6)p7 and F1 = F0 +νF0 = l1(p3 +
p4)+ l2(p2 +p4)+ l3(p2 +p3)+ l4(p1 +p2)+ l5(p1 +p4)+ (([1+l4)p5 + (l2 + l5)p6 + (l3 + l6)p7).
Formulas (19), (20), (21) are exact analogs of those (9) and (11) but the "exotic" oncatenations

of matrices are changed by usual polynomial additions.

These formulas also give rise to alternative algorithm for recursive construction of f r (Π4).

6. IMPLEMENTATION
As was said above we used matrix and bilinear forms approaches.

The first difficulty in programming was caused by the requirement to avoid zero-

columns/rows in incident matrices as well as "fictitious" variables in bilinear forms.

This difficulty is surmounted with special procedures for numeration of new constructed

columns/rows of matrices and new variables of bilinear forms.

A more serious obstacle is the (above-mentioned) fact of the very fast growth of matrices’

formats. Though those are very sparse 0-1-matrices, the programming tools for such matrices

provided by Mathematica proved insufficient for our purposes, so computer memory resources

became exhausted quickly.

As a result, we managed to calculate only 7 members of the sequence un = νPn +νΛn , n ≥ 0
(note that one of the two summand in "un" is always equal to 0):

3, 3, 6, 24, 282, 37233, 684792168, ....

It is easy to check empirically that this sequence grows asymptotically as a double exponent

of n (Fig. 7).

Figure 7. Number of elements grows as double exponent (linear on log(log) scale
Though we failed so far to find a general formula for the number of new elements on each

step, we can find the (rather rough) upper bound using (4.1) and (4.3): ignoring second terms we

immediately get

νPs−1 ≤
(
Λs−1

2

)
, νΛs−1 ≤

(
Ps−1

2

)
.
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Assuming νPs−1 =
(Λs−1

2

)
and νΛs−1 =

(Ps−1
2

)
we have

Λs =Λs−1, Ps = Ps−1 +νPs−1 for s even,
and

Ps = Ps−1, Λs =Λs−1 +νΛs−1 for s odd. See upper line on Fig. 8.
We can improve this upper bound by taking into account that all diagonal elements in (4.1) and

(4.3) always are ≥ 3. We have

νPs−1 ≤
(
Λs−1

2

)
−3Ps−1, νΛs−1 ≤

(
Ps−1

2

)
−3Λs−1.

In both cases we get double exponential growth. These two lines together with our result are

shown in Fig. 8.

Figure 8. Number of elements (lower line) and two upper bounds
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Аннотация
Работа посвящена компьютерному моделированию процесса построения свобо-

дных проективных плоскостей, или более точно, алгоритмическому нахождению

их последовательных матриц инцидентности. Рассматриваются также некоторые

целочисленные характеристики этих матриц. Матричный метод, а также подход,

использующий билинейные формы, применяются для изучения темпов роста чи-

сла новых элементов (точек, линий) в процессе поэтапного построения проектив-

ной плоскости, начиная с конфигурации М. Холла Π4
. Число новых элементов ра-

стет асимптотически как двойная экспонента (линейно по log(log) шкале.) Оценка
сверху также дает двойной экспоненциальный рост.
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бинаторные схемы.
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